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Moore’s asymptotic analysis of vortex-sheet motion predicts that the Kelvin—
Helmholtz instability leads to the formation of a weak singularity in the sheet
profile at a finite time. The numerical studies of Meiron, Baker & Orszag, and of
Krasny, provide only a partial validation of his analysis. In this work, the motion of
periodic vortex sheets is computed using a new, spectrally accurate approximation
to the Birkhoff-Rott integral. As advocated by Krasny, the catastrophic effect of
round-off error is suppressed by application of a Fourier filter, which itself operates
near the level of the round-off. It is found that to capture the correct asymptotic
behaviour of the spectrum, the calculations must be performed in very high
precision, and second-order terms must be included in the Ansatz to the spectrum.
The numerical calculations proceed from the initial conditions first considered by
Meiron, Baker & Orszag. For the range of amplitudes considered here, the results
indicate that Moore’s analysis is valid only at times well before the singularity time.
Near the singularity time the form of the singularity departs away from that
predicted by Moore, with the real and imaginary parts of the solutions becoming
differentiated in their behaviour; the real part behaves in accordance with Moore’s
prediction, while the singularity in the imaginary part weakens. In addition, the
form of the singularity apparently depends upon the initial amplitude of the
disturbance, with the results suggesting that either Moore’s analysis gives the
complete form of the singularity only in the zero amplitude limit, or that the initial
data considered here is not yet sufficiently small for the behaviour to be properly
described by the asymptotic analysis. Convergence of the numerical solution beyond
the singularity time is not observed.

1. Introduction

A vortex sheet is a surface in an inviscid and incompressible fluid across which the
velocity is discontinuous; it serves as a simple model of a high-Reynolds-number
shear layer. Ideally, vortex-sheet motion could be used as the first term of the outer
solution in a matched asymptotic expansions approach to studying high-Reynolds-
number shear flows. Since the global existence and smoothness of a two-dimensional
shear flow evolving from smooth initial conditions is guaranteed (McGrath 1967), a
necessary condition for the success of such a program would be the global existence
of this outer solution. However, there is now strong evidence that the two-
dimensional vortex sheet acquires a singularity at a finite time well before the
appearance of the large-scale roll-up commonly associated with shear layers. The
possible nature and existence of vortex-sheet motion beyond the singularity time is
an open question.

The first analytical evidence of singularity formation was provided by Moore
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(1979, 1985). For a sinusoidally perturbed sheet with uniform strength, Moore
performed a small-amplitude perturbation analysis of the Birkhoff equation, which
governs vortex-sheet motion. His analysis indicated that at a finite time the
curvature of the sheet profile diverged, with the sheet strength remaining finite, but
acquiring a cusp. More specifically, his approximate analysis indicated the presence
of a pair of branch singularities of order , above and below the real axis in the
extended Lagrangian variable plane, which moved to the real axis in a finite time.
For specially chosen entire initial data, Meiron, Baker & Orszag (1982) (hereinafter
referred to as MBO) found consistent results by studying the Taylor series in time
constructed numerically from the Birkhoff equation. Using the point-vortex
approximation and a Fourier filter to control the errors induced by round-off error,
Krasny (1986a) (hereinafter referred to as Kr) studied direct simulations of vortex-
sheet motion from an unstable, linear eigenfunction initial condition, and also found
results consistent with Moore (1979). Moreover, before the singularity time, the
numerical solution converged, but convergence was lost beyond the singularity time.
While neither of these studies was able to convincingly identify the order of the
branch, they both presented numerical evidence that its order was between 1 and 2.
Caflisch & Orellana (1989) have found a continuum of explicit solutions to the
Birkhoff equation which display finite time singularities. However, these solutions
have initial data which are not entire, but which begin with branch singularities in
the extended Lagrangian variable plane. The order of the branch singularity is a free
parameter, and the mechanism by which a singularity is chosen by the general
initial-value problem is not known. None of these studies indicate whether the sheet
still exists beyond its singularity time. Other results concerning existence and well-
posedness of vortex-sheet motion can be found in Sulem et al. (1981), Caflisch &
Orellana (1986) and Caflisch & Orellana (1989).

A precise understanding of singularity formation in vortex-sheet motions is
important for several reasons. First, vortex sheets are often used in models of fluid
motions, and it is important to understand the limits of their applicability. For
example, vortex sheets have been used successfully in the study of large-amplitude
surface waves (see, for example, Longuett-Higgins & Cokelet 1976 ; Baker, Meiron &
Orszag 1982), and in the Rayleigh-Taylor instability for a fluid falling into vacuum
(Baker, Meiron & Orszag 1980 ; Baker et al. 1987). These all correspond to interfacial
flows with an Attwood ratio of 1 or —1. Conversely, researchers have had
considerable difficulty in simulating the Rayleigh-Taylor instability in fluids with
non-unit Attwood ratio (e.g. Baker et al. 1980). It is believed that these difficulties
are related to the formation of singularities in the vortex sheets modelling the
interface between the two fluids of different densities. Secondly, Krasny (19865) and
Baker & Shelley (1990) have raised the intriguing possibility that the vortex sheet
may exist after its singularity time as a doubly-branch spiral. Clearly then, a detailed
knowledge of the formation of the singularity is crucial in deducing the form of the
spiral, or if it is even an allowable possibility. Lastly, the mathematical analysis of
the vortex sheet singularity is greatly simplified by knowing that it actually does
have the form suggested by Moore (Caflisch, private communication).

It is known that measured-valued solutions exist globally for vortex-sheet initial
data (Diperna & Majda 1987), but the notion of such a solution is so general that it
gives little information about its specific nature. It is also possible that vortex-sheet
motion still exists beyond its singularity time as a classical weak solution to the Euler
equations, though perhaps it is no longer described by the Birkhoff-Rott equation.
Consistent discretizations to the Birkhoff equation have failed to yield reliable



Singularity formation in vortex-sheet motion 495

results beyond the singularity time, so alternative methods have been employed.
Krasny (1986b) modified the Birkhoff equation by smoothing the singular
Biot—Savart kernel through convolution with an approximate delta-function of
width §. Past the singularity time for the vortex sheet, and for a fixed value of d,
solutions to the smoothed equation reveal a doubly branched spiral structure, with
the number of turns of the spiral increasing, apparently without limit, as é is reduced.

In Baker & Shelley (1990), the vortex sheet is replaced by constant and finite
vorticity contained within a thin layer of mean width H. The limiting behaviour of
such vortex layers is then studied numerically, as H is reduced, to determine the
possible nature of the vortex sheet past its singularity time. Beyond the singularity
time, for each value of H, the vortex layer forms an elliptical core with attached,
trailing arms. In the region of the boundary where the arms attach to the cores, the
curvature shows very rapid growth. A natural conjecture then is that the curvature
on the boundary of the layer diverges, and that these curvature singularities collapse
to the vortex-sheet singularity in the limit. However, a careful examination of the
computed Fourier spectrum suggests that this is not the case, and that the
boundaries of the layer remain smooth. Instead, it seems the singularity forms only
in the limit of zero H, as a consequence of accumulations of vorticity in the centre
region. It is this accumulation for a finite value of H, which engenders the appearance
of the elliptical core, with attached, trailing arms. As H is reduced at a fixed time past
the singularity time, the approximation to the vortex-sheet strength associated with
the core width appears to increase without bound. However, the total vortex-sheet
strength associated with the core, or equivalently, the core circulation, appears to go
to zero as H is reduced. Such behaviour does not preclude the existence of a classical
weak solution in the zero H limit (Diperna & Majda 1987). Concomitant with this,
the arms attached to the core converge away from the core, but become increasingly
tightly wound in the core region.

Using a new, spectrally accurate approximation to the Birkhoff-Rott integral,
singularity formation in vortex-sheet motion is re-examined, with the intent of
acquiring more precise information on the singularity structure. In their study of the
numerical solution of integral equations for conformal mapping, Sidi & Israeli (1988)
noted that an alternate point, trapezoidal quadrature of integrals with singular,
periodic Cauchy kernels, such as the integral in the Birkhoff-Rott equation, yielded
spectral accuracy (i.e. is of infinite order). Unlike other quadrature rules (see, for
example, Conte 1979), no singularity subtraction is performed, nor do derivative
approximations need to be computed. This result is applied to the Birkhoff-Rott
integral to yield an approximating set of ODEs to the Birkhoff-Rott equation, whose
spatial consistency error is of infinite order. The infinite order of the quadrature
follows from the fact that the asymptotic error expansion of the point-vortex
approximation, as used by Rosenhead (1931), Kr and many others, has in this
context only one term of algebraic order, namely O(h), with the remainder being of
infinite order. A simple Richardson extrapolation removes this first-order error term,
yielding the spectrally accurate quadrature rule. We refer to this new semi-discrete
system as the modified point-vortex approximation. As it arises as a linear
combinations of point-vortex approximations to the Birkhoff-Rott integral, the
modified point-vortex approximation inherits a Hamiltonian structure, and con-
serves the same quantities as the point-vortex approximation (i.e. circulation and
moments of vorticity).

Owing to the ill-posedness of the linearized motion (the disturbance growth rate
scales linearly with its wavenumber), care must be taken to control the effect of
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round-off-error. To this end, we employ the Fourier filter advocated in Kr, which, at
each timestep, zeros any Fourier modes with amplitude less than some given
tolerance. The filter operates near the level of the machine round-off. The calculations
presented here were performed in 30 digits of precision, with the filter tolerance set
to 10725, It will be seen that this level of precision and filter are necessary to discern
the asymptotic behaviour of the Fourier spectrum, which in turn reveals the
structure of the nascent singularity.

The evolution of the vortex sheet from initial conditions first considered by MBO
is studied in detail for several initial amplitudes. In addition to their numerical
study, MBO also performed Moore’s analysis for their initial condition, and found
results identical to Moore’s. Strictly speaking, Moore’s analysis should be valid only
for data of sufficiently small initial amplitude, at times well away from the critical
time. An important question is whether it also well describes the singularity that
actually forms on the sheet, and if so, whether it is generic, describing well singularity
formation even in large-amplitude data. We find that for the initial conditions
considered here, Moore’s analysis does appear to be valid at times well before the
singularity time. However, near the singularity time a transition in behaviour takes
place. The real and imaginary parts of the solution become differentiated in their
behaviour, with the imaginary part becoming smoother than the real part, which is
itself well-described by Moore’s analysis. We also find that the apparent form of the
singularity depends upon the amplitude of the initial data. The results suggest that
either Moore’s analysis gives the full form of the singularity only in the zero-
amplitude limit, or that the data considered here is not yet sufficiently small for the
behaviour to be properly described by his asymptotic analysis.

Section 2 provides further background of the problem. Section 3 discusses the
modified point-vortex approximation, its properties, and its relationship with other
approximations. Section 4 gives the results of a numerical study of vortex-sheet
evolution using the modified point-vortex approximation. This includes a detailed
study of the spectrum, which reveals the form of the nascent singularity, and also a
study of the straining flows about the point of singularity. Section 5 gives concluding
remarks.

2. Background of the problem

The geometry of a planar vortex sheet is illustrated in figure 1. The sheet position
is parametrized by a real variable p as 2(p,t) = x(p, t) +iy(p,t), — 0 < p <+00. The
variable p is chosen to be constant along paths moving with the average of the
velocities on either side of the sheet, and p is now referred to as the Lagrangian
variable. This yields the Birkhoff-Rott equation of vortex-sheet motion,

0z* _ 1 (" v .
W(""")’%ipf_w -2 b L 1)

Here 7y is called the vortex-sheet strength, z* denotes the complex conjugate of z, and
the Birkhoff-Rott integral is of principal value type. That y does not depend upon
time expresses the fact that the circulation is conserved along Lagrangian particle
paths. The jump in tangential velocity across the interface is called the true vortex-
sheet strength, and is given by

Y(p)
|2,(p, ¢)]

P(p.t) = : (2.2)
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6

Fiecure 1. A schematic of two-dimensional, planar vortex-sheet geometry.

where the subscript p refers to partial differentiation. If the sheet initial data
is 2n periodic in the z-direction, that is z(p+2m,t =0)= 2n+2(p,t =0), and
y(p+2r) = y(p), then the subsequent motion will be also, and is governed by the
periodic form of (2.1),

d2* "
.0 = 4ij: ¥(g) cot Ha(p, ) —2(g, )] dg. (2.3)

It is the periodic form of the Birkhoff-Rott equation that will be considered in this
study. As for smooth vorticity distributions, there are constants of the motion
associated with vortex-sheet motion. These include the total circulation and the first
moments of the vorticity in a periodic strip, and the energy,

E= f dp 7(p)fn dg¥(q) In{cosh [y(p) —y(q)] — cos [x(p) —z(q)]}- (2.4)
0 0

There will sometimes be analogous constants of the motion for the discrete systems
arising as approximations to vortex-sheet motion.

The chief difficulty, which makes both the analytical and numerical treatment of
the Birkhoff-Rott equation very delicate, is the ill-posedness of its linearized motion,
as a consequence of the Kelvin—-Helmholtz instability. A simple equilibrium is
given by a flat sheet with uniform sheet strength. Letting y{p) = 1+€J(p), and
2(p,t) = p+eu(p,t) with € < 1, the linearized Birkhoff-Rott equation is given by

a*
il

1 .
o p,t) = RPJ: [7(q) — 14(9. t)] cot §(p —q)dg

where H denotes the Hilbert transform (Carrier, Krook & Pearson 1966, p. 417).
Letting ¥(p) = f% cos kp+ £ sin kp, (2.5) has trigonometric solutions of the form

,u(p,t)=[ai(l—1%)e”‘———ﬂk]coskp+[ak(l—1l |) “+r:_|ﬂ‘,’,]sinkp, (2.6)

where o¥(k) = k2. (2.7

Thus, there is a positive growth rate o(k) = ik, with the linearized modes having
arbitrarily large growth rates, implying an ill-posed linear motion. This is known as
the Kelvin—Helmholtz instability. Birkhoff & Fisher (1959) conjectured that for the
full nonlinear motion, the linear ill-posedness would cause initial data analytic in its
Lagrangian variable to lose is analyticity in a finite time. Birkhoff (1962) also
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conjectured that such analytic initial data for (2.1) would remain analytic for at least
short times. Sulem et al. (1981) have proved Birkhoff’s conjecture (Birkhoff 1962).
Caflisch & Orellana (1986) have proved long-time existence, within the class of
analytic functions, for analytical initial data that is slightly perturbed from a flat
sheet. Caflisch & Orellana (1989) and Ebin (1988) have proved the ill-posedness for
nonlinear vortex-sheet motion in some non-analytic function spaces.

Moore (1979, 1985) has given the first analytical evidence that a vortex sheet can
lose its analyticity within a finite time through the formation of a weak singularity
in the sheet profile. Moore examined the evolution from the initial condition

z(p,t =0) = p+iesinp, y(p)=1, (2.8)

for € <€ 1. This initial condition is composed of both a growing and a decaying linear
mode, as given by (2.6). The interface may be represented as the Fourier series

k=+w

op,t) =p+ 2 A(t)e™?, (2.9)

k=-w
with 4, = —A_,. Substitution of (2.9) into (2.1) yields an infinite system of ordinary
differential equations for the evolution of 4,(t), with each equation itself containing
an infinite number of terms. For small ¢, the amplitudes 4,(¢) can be expanded as

Ay(t) = €Ay () + €524, 65114, + ., (2.10)

and by equating powers of ¢, it is found that evolution of A, () depends only upon
A, o) for n < k. This system, for A, ,(t), is then studied for large £. In an analysis
presumably valid for £ > 1, Moore found the asymptotic behaviour is given by

(141), s
€4, ot) = e k™iexp [k(1+§+Injet)]. (2.11)
If ¢ (€) is defined by
1+%tc+lntc=ln%, (2.12)

then for ¢t < t.(¢), the leading-order Fourier coefficients, €¥4, ,, decay exponentially
fast. However, for t =t,(¢), this exponential decay is lost, and €*4, o decays only
algebraically as k~%. This is the crucial result of Moore’s analysis; if the full evolution
of the vortex sheet is well described by this leading-order behaviour, then at t = ¢,(¢),
the analyticity of the solution is lost.

The behaviour of the Fourier coefficients can be reinterpreted in terms of the
spatial behaviour of the sheet profile. The approximate summation of the Fourier
series given by ¥4, ((t) yields

2(p,t) = 2V3 2V 2 (141 {[1 —ePel(t)F— [1 —e~Peb(t) [ + ¢, (2.13)

where i contains less singular terms. As t—¢.(¢)”, we have that ef(t)—> 1~, and the
profile acquires singularities at p = 0, + 2rn, £+ 4x, etc. Thus, the singularity formation
can be interpreted as the approach to the real p-axis in the periodic strip, from above
and below, of a pair of branch singularities of order 3. The analyticity strip width of
the solution, or the distance of the singularity pair from the real axis, is given by
a(t) =~ (1+3+1Iniet).
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MBO also examine vortex-sheet evolution, but from the initial condition
2p,t =0)=p, 7y(p)=1+acosp. (2.14)

Again, for small a this initial condition is a combination of a growing and a decaying
linear mode, as given by (2.6). MBO also found evidence of an isolated singularity
forming in the sheet profile at a finite time. In addition to repeating Moore’s
asymptotic analysis for this initial condition, they also studied the singularity
formation using extended time series methods. For Moore’s analysis, the expansion
of the Fourier amplitudes is in a, rather than e¢. They found that to leading order the
analysis gave results for initial condition (2.14) identical to those for (2.8); the MBO
results are obtained by merely substituting a for ¢ in (2.10), (2.11) and (2.12). Their
study using extended time series gave results different from those predicted by
Moore’s analysis. The series methods indicated that at the singularity time,
|4, (t) =& k27202 rather than k725, as given by Moore’s analysis. They were unable
to assign a definitive cause to the discrepancy, attributing it perhaps to higher-order
corrections dropped in Moore’s analysis. They also found that ¢.(a), as calculated
from (2.12), was typically an underestimate of the singularity time.

Krasny (1986a) also studied vortex-sheet singularity formation, now proceeding
from initial conditions that are unstable eigenfunctions for the Kelvin—Helmholtz
instability. In agreement with Moore and MBO, Krasny found evidence for the
appearance of a weak singularity in the sheet profile at a finite time. In particular,
he studied the evolution of vortex sheets from initial conditions of the form

2(p,t =0)=p+(1—i)esinp, y(p) =1 (2.15)

In addition to performing Moore’s analysis for (2.15), Kr also performed direct
simulations of vortex-sheet motion using the point-vortex approximation to the
Birkhoff-Rott equation, and a Fourier filtering technique to control the growth of
errors introduced by the round-off of the calculation. The Fourier amplitudes, 4,(t),
were approximated from the numerical data using the discrete Fourier transform,
and the behaviour of the approximate amplitudes was studied. Kr assumed that in
some range of sufficiently large % the approximate amplitudes had the form
suggested by Moore’s analysis, or

I4,(t) & O(t) kP® g0k (2.16)

Thus, if a(t) goes to zero at some finite time, as Moore’s analysis indicates is the case,
the decay of the Fourier spectrum is purely algebraic, indicating some derivative
singularity whose order is determined by the value of £ at this critical time. The
parameters C, f, and a were estimated using a least squares fit over some range in k,
and the behaviour in time of these approximated parameters is examined. This
analysis suggested that a(t) did become zero at a finite time. However, Kr was unable
to obtain reliable estimates for the value of £, which Moore’s analysis indicated
should be g(¢) = £, independent of time. It is shown in §4 that to get such estimates,
much higher precision must be used (29 digits vs. 15 digits), and higher-order terms
must be included in (2.16).

3. The modified point-vortex approximation

In this section the numerical approximations used for calculating vortex-sheet
motion are discussed. This will focus mostly on quadrature methods for the
Birkhoff-Rott integral, together with the properties of these approximations. Here
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will be given a new, spectrally accurate quadrature of the Birkhoff-Rott integral.
This quadrature is closely related to the point-vortex approximation, and preserves
many of the favourable properties of that approximation. We begin with a discussion
of the point-vortex approximation.

Following Rosenhead (1931), Krasny (1986 a) used the point-vortex approximation
(subsequently referred to as the PVA) to study vortex-sheet motion. Discretizing
2(p,t = 0) and y(p) uniformly in the Lagrangian parameter p as z,(t = 0) = z(jh,t = 0)
and y, = y(jh), with b = 2n/N and j = O(1)N, (2.1) is approximated by the set of
ordinary differential equations

d o 1 N3
GO = gt I vecotat) =2, 0). (3.1)
k+j

The PVA is the trapezoidal rule approximation to the periodic Birkhoff-Rott
integral, omitting the singular contribution at k = j. This set of discrete equations is
then numerically integrated, and its behaviour studied, as far as is practically
possible, in the limit of large N. The spatial consistency error, or the quadrature
error, of the PVA is O(h). Caflisch & Lowengrub (1989) have proved that for initial
data close to the flat equilibrium, the PVA converges to the motion of vortex sheet.

Presupposing the strict positively (or negativity) of y(p), the discrete set of
equations, (3.1), forms a Hamiltonian system with Hamiltonian

N-1 N-1

Hy=h X y;h X yiIn[cosh (y,—y,) —cos (x;—x;)], (3.2)
4=0 k=0
k#+]

where the conjugate variables p,, and g,, are related to the spatial variables z,, and
Ym bY . ,
Pm = BTRY ) Yms  qm = (SThY )"y,

Consequently, Hy is a constant of the motion. H,, can also be related to the energy
E of the vortex sheet by noting that H is an O(k) accurate quadrature of the energy
given in (2.4), with the quadrature being of a form consistent with the PVA
discretization of the Birkhoff-Rott equation. In addition to the Hamiltonian, the
PVA has as constants of the motion discrete analogues of the circulation and the first
moments of vorticity in a periodic strip.

As with the vortex sheet, a simple equilibrium of (3.1) is given by zc(t) = kh,
¥, = 1. Associated with this equilibrium is an discrete dispersion relation, analogous
to (2.7), given by

o) = 1{1-3) 3.3

for £ = O(1) 3N (Lamb 1932). Note that the linearized discrete system (3.1) can evince
a high wavenumber growth very similar to that of the vortex sheet, and that (2.7)
is recovered as N—oo for fixed k. The largest discrete growth rate is at the highest
wavenumber allowed on the mesh, & = iV, with growth rate o (k = 1N) = 1N, or half
the growth rate for the same wavenumber in the true sheet motion. Practically
speaking, this means that perturbations from the round-off error of the calculation
can (and will) lead to the rapid and spurious growth of the high-wavenumber
amplitudes, causing a rapid departure of the computed solution of the discrete
system from approximating the continuous system. For this reason, Kr employed a
Fourier filter that, at each timestep, zeroed any Fourier amplitude whose modulus
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was less than some preassigned tolerance. By choosing this tolerance to be close to
the round-off error of the calculation, it should, in principle, effect mainly those
modes whose amplitude is being determined by the action of round-off error, rather
than the nonlinear dynamics of the motion. The utility of such a device for
calculating vortex-sheet motion with finite precision is well-documented by Kr. This
device is also used in this work, but in contrast to Kr, it is not found that the use of
the filter is equivalent to calculating in a higher precision, and find that care must
be taken to determine the effect of the filter level, and the precision which determines
it, on the calculated solution.

There is another approximation to the Birkhoff-Rott equation, based upon the
trapezoidal rule at alternate points, which is closely related to the PVA, does not
require the approximation of any derivatives, and is yet spectrally accurate.
Specifically, this quadrature rule gives

d 2h) N3}
FTO="5 T recotllnt—z) (3.4)
J+kodd

as an approximation to (2.1). Here N is assumed to be even. We refer to (3.4) as the
modified PVA, or MPVA.

To see the connection between the PVA and the MPVA, their respective errors as
approximations to the Birkhoff-Rott integral must be examined. Not only will it be
seen that the PVA is of first-order accuracy, while the MPVA is of infinite order, but
that the MPVA arises through one Richardson extrapolation of the PVA error
expansion.

We begin by showing an upper bound on the quadrature error of the trapezoidal
rule to the integral of a periodic, analytic function over its period. Let g(p) be periodic
on [0, 2n], and analytic within the strip [ —ip, +ip], including its boundary, about the
real p-axis with 0 < p <co. Then

74 N-1 e—pN
A, = f gp)dp—h 2 g(kh)| < Clp) T— =7
] k=0 —e
and consequently,
|A,l < 2C(p)e~#¥ (3.5)

for sufficiently large N. This follows from expressing A, as the aliasing error of the
zeroth mode of the discrete Fourier transform of g, from the zeroth mode of the
Fourier transform of g(p). This may then be easily bounded through an application
of Cauchy’s theorem. The error bound in (3.5) is a typical realization of spectral
accuracy; the error decreases faster than any algebraic power of 1/N. The
Birkhoff-Rott integral will now be rewritten so that this result becomes applicable.

Without being specific, assume that y(g), and z(g) are analytic in some strip about
the real g-axis. Assume also that z(¢g) is a single-valued function of ¢, and that
2,(q) #* 0 for any g. All of these assumptions are justified, for at least short times in
the small-amplitude regime, by the various regularity results previously given for
vortex-sheet notion (Caflisch & Orellana 1986; Sulem et al. 1981). Without loss of
generality, set p = 0, and assume z(0) = 0. Letting f(q) = y(q) cotiz(¢), and using the
periodicity of the integrand, now consider the integral centred about the origin, or

-7 fo
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and its two approximations,

iN-1 IN-1
Ii=h ¥ fo. I3=2h X% fo
k=—iN k=—iN
k+0 kodd
Clearly, I* corresponds to the PVA, and I? to the MPVA. Now let f(q)
Ev(q)+ 0d(g), where Ev(g) = i[ f(q +f 9] and 0d(q) = I flg)—f(—q)]. Note that

0d(q) is an odd function about the origin, and has a 31mple pole there On the other
hand, Ev(q) is analytic in a strip about the real g-axis, with a removable singularity
at ¢ = 0. Now using the fact that the principal value integral over [—m, 7] of an odd

function is zero yields
= ﬁEV(q) dq.

Both the MPVA and the PVA preserve this feature, likewise yielding

IN-1 iN—1
ho_ n o
I'=h 21 Ev,, II=2h El Ev,.
k=—iN k=—1iN
k+0 kodd

Thus the MPVA is the trapezoidal rule approximation, over alternate points, to the
integral over the period of a periodic, analytic function. The spectral accuracy
follows from the previous remarks. Sidi & Israeli (1988), in their study of the
numerical solution of the integral equations for conformal mapping, have shown that
the alternate point trapezoidal rule yields spectral accuracy for a class of integrals
with singular and periodic kernels, of which the Birkhoff-Rott integral is a special
case. Note that the PV A is also a trapezoidal rule approximation of the same periodic
and analytic function, now over all points except k = 0. It is the omission of this term
that yields the O(h) error. The inclusion of this term leads to the approximation of
Van de Vooren (1980),

d , 1 5 U ¥52ppi(8) — 27 3y 2psf)
] (&)= 41t kzo ¥ COt 3[2,(8) zk(t)]+h% 220 . (3.6)
k+j

Here, the order of the quadrature error is determined by how accurately z,, and z,,;
are approximated. For example, discrete Fourier transforms could be used to yield
spectral accuracy.

An alternate interpretation would be to note that the only algebraic error term in
the quadrature error for the PVA comes from the k = 0 term. A single Richardson
extrapolation removes this order 4 term, yielding the MPVA and spectral accuracy.

Another high-order quadrature of the Birkhoff-Rott integral uses the identity

1 2n
—.PJ 24(g) cot 3[z(p) —2(q)]dg = 0

4mi 0

Equation (2.1) is then rewritten as

az*( = 1 "7(q)zp(p,t)—7(p)zq(q,t)cot%(z(p 9

o P =5 . @0 —2(q,t))dgq. (3.7

The integrand in (3.7) is now smooth and periodic, having made the singularity at
q = p removable. If z(p) and y(p) are again discretized uniformly in their parametric
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variable p, the trapezoidal rule may be applied to yield spectral spatial accuracy.
Here z,(q) at the mesh points would be found using the discrete Fourier transform
(again, spectrally accurate). The trapezoidal rule can be applied in at least two ways.
One may choose to perform the quadrature over all the points, taking the
appropriate limiting value at the point where p = ¢ (and for which z,,(q) must be
approximated), or the quadrature may be performed over alternate points (see Baker
& Shelley 1986), thus avoiding the evaluation of the integrand at the indeterminate
point.

Finally, note that these arguments are only concerned with the spatial consistency
of the MPVA, not with its convergence to the time-dependent motion of the sheet.
Hou, Lowengrub & Krasny (1991) have now proved that, for initial data sufficiently
close (in the appropriate sense) to the flat equilibrium, the MPVA converges with
infinite order to the motion of vortex sheet. Their method of proof does not extend
to times when the data is large, much less the singularity time. However, even when
the analyticity strip width is zero the MPVA remains a convergent quadrature of
the Birkhoff-Rott integral for a branch singularity of order §, such as is posited
by Moore (setting ef =1 in (2.13)). In this case, while there is no exponential
convergence in N, the error can still be bounded by an algebraic error of O(1 / VR,

As the MPVA arises from the PVA through a Richardson extrapolation, it is
hardly surprising that the MPVA is also a Hamiltonian system. A Hamiltonian for
this system can again be found by a consistent discretization of the energy E, or

N-1 N-1
Hy="h Z Y; 2h 3 vIn[cosh (¥;—yx) —cos (xj_xk)]’ (3.8)
=0 j+’;c-o‘:id

with the same conjugate variables as the PVA. Note that (3.8) is only an O(h)
approximation to E, and it would seem contradictory that a spectrally accurate
approximation to the Birkhoff-Rott integral could arise from it. Fortunately, Hy
differs from being a spectrally accurate approximation to E by only a time-
independent term, which can be given explicitly. A Hamiltonian which is a spectrally
accurate approximation to E is given by

” N-1 1] N-1
Hy=Hy+h ) yj[f y(g)In[1—cos (jh—q)]dg—2h 3 ykln[l—cos(jh—kh)]].
j=0 0 k=0
j+kodd

(3.9)

The correction term is independent of the solution z;(t) and y,(t), and does not modify
the equations of motion. In principle, it can be calculated to as high an accuracy as
desired, as y(q) is assumed known. For the initial data for z and y considered in this
work, the correction term can be calculated in closed form. Thus, Hy is a constant
of the motion for the discrete system, and a spectrally accurate discretization of the
energy E. Nonetheless, Hy, is a constant of the motion associated with the semi-
discrete equations, and its spectral accuracy aside, is only useful as a check of time-
integration errors. In addition, we note that as with the vortex sheet and the PVA,
the circulation and first moments of the vorticity in a period are constants of the
motion for the MPVA.,

Again, a simple equilibrium is given by z,(t) = kh and y, = 1. As pointed out by
G. Baker, its discrete dispersion relation matches that of the continuous system
exactly, or

ol (k) = 12, (3.10)
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for k = O(1) 3N. This is a reflection of the spectral accuracy of the approximation, but
is also an argument for the necessity of the Fourier filter in controlling the behaviour
of the high modes in the calculation. Again, the fastest growing discrete mode is at
the largest wavenumber on the mesh, k = V.

4. Numerical results

The results of a numerical study of singularity formation in vortex-sheet motion
are given in this section. In particular, vortex-sheet evolution from initial conditions
(2.14) is studied for several values of a. As discussed in detail in §2, MBO found
strong evidence for singularity formation from these initial conditions, both by using
Moore’s analysis, and by studying Taylor series in time that were constructed
numerically. Here, using the MPV A, the vortex sheet is numerically evolved forward
in time, and its behaviour is studied as the numerical parameters of the
approximation are varied. A fourth-order, Adams-Moulton, predictor—corrector
method is used for time integration. The numerical parameters are not only N, the
number of ODEs, and the timestep At, but also the tolerance level ¢ of the Fourier
filter. The minimum value of & is dictated by the available precision of the
calculation. It is both é and N that determine the number of Fourier modes that
participate in the calculation of the Birkhoff-Rott integral. Assume that the
spectrum is given and that it decays monotonically, at least for sufficiently large k.
That is, |4,,(t)| < |4,(t)| (and of course that A, (t) >0 as k—>o0). Then, given a § > 0
there exists a K,, such that |4,| < 6 for all £ > K,. All such modes are set to zero by
the Fourier filter. Thus, the number of modes participating in the integral evaluation
is min (K,,3N). The value of & can have a large effect when attempting to discern
delicate details of the decay of the spectrum. Here, the calculations are performed in
29 digit arithmetic (Cray double precision) with § = 10~%. Strictly speaking, ¢ should
be treated as a convergence parameter, with its effect upon the calculation studied
as its value is reduced as far as is practically possible. For an illustrative case, both
the values of d and N are varied (6 = 1074, 1072°, and 10~%) to discern the effect upon
the approximate solution. If varying & can be interpreted as the effect of varying
precision (and numerical experiments suggest that it can) it illustrates that very high
precision is necessary to uncover the correct asymptotic decay of the spectrum, at
times both away and near the singularity time. Such high precision calculations are
expensive, and their speed depends upon the hardware and software implementation
of double precision. On the Cray-2, a velocity evaluation, using the MPV A, in double
precision with N = 512 takes 5.5, versus 0.1 in single precision. Nonetheless, a
resolution study is provided, which indicates that spectral convergence is maintained
to very near the singularity time.

Additionally, a very different technique is used for analysing the numerically
computed spectrum to those used in previous studies (Sulum, Sulem & Frisch 1983 ;
Kr; Baker & Shelley 1989). Rather than estimating the decay of the spectrum
through a least squares fit over a range of wavenumbers k, with the form given by
(2.16), the spectrum is fit point-wise in £ with a form which includes (2.16), but also
attempts to capture higher-order effects. Pugh (1989), using a lower-order
approximation to the spectrum, first employed such a point-wise fit to the spectrum
in his study of Boussinesq flows.

As a result, we provide strong evidence that the Fourier series of z(p, t) —p decays
asymptotically as predicted by (2.11), but only at times away from the singularity
time. Moore’s analysis is presumably valid only for ¢ < ¢, and sufficiently small initial
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FicuRk 2. The evolution of the vortex sheet, with a =1, for the MBO initial conditions, from
t =0 to 3.0 at intervals of 0.3. ¢ =~ 3.015 is the estimated singularity time.

data. It has not been known whether it generally and precisely described the
singularity itself. In its main points, Moore’s analysis appears to be adequate. It
predicts the formation of the singularity at a finite time, that the curvature diverges
at this time, and that the true vortex-sheet strength acquires a cusp. There are some
disagreements. In accordance with MBO, we find that Moore’s analysis, through
(2.12), underpredicts the singularity time. At this predicted singularity time, the
solution is still smooth (analytic), and from this time there begins a transition in the
decay of the Fourier series away from that given by (2.11). This transition leads to
a differentiation in behaviour of the real and imaginary parts of the solution ; the real
part behaves in accordance with Moore’s prediction, while the singularity in the
imaginary part weakens. We also find that the form of the singularity depends upon
the initial amplitude, and the results may suggest that either Moore’s analysis gives
the form of the singularity only in the limit of zero amplitude, or that Moore’s results
are only realized at yet smaller values of the initial amplitude. We begin with a study
of vortex-sheet evolution at times away from the singularity time.

4.1. The validity of Moore’s analysis away from the singularity time

As has been remarked previously (Moore 1979; MBO; Kr), the singularity appears in
the sheet profile well before the occurrence of any of the large-scale roll-up typically
associated with the instabilities of shear layers. Using the MPVA, the vortex sheet
is evolved forward from the initial conditions

2Ap,t=0)=1p, y@p)=—1+acosp, 4.1)

for various values of a. This is just the initial condition (2.14), after a translation by
n in p, and a change in sign of the vortex-sheet strength. This form is used for
historical reasons, and the only difference in behaviour is that the singularities now
occur at p=...,—m, W, ....

First, we consider our smallest-amplitude initial condition a = 0.125. For this
value of a, (2.12) predicts that ¢, ~ 2.84. Figure 2 shows the sheet profile from ¢t = 0
to 3.0, at intervals of 0.3. The calculation used N = 256, At = 0.01, and 6 = 10725, This
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Ficure 3. The evolution of X, (t) and Y,(¢), with a =1, from ¢ = 0 to 3.0 at intervals of 0.15.

timestep is sufficiently small so that the Hamiltonian H, was conserved to at least
10 digits throughout the calculation. At the last time shown, ¢t = 3.0, the sheet is not
much perturbed from its initial condition, and still appears quite smooth.
Nonetheless, the sheet is very close to its singularity time, which is estimated to be
t. =~ 3.015. We proceed with an analysis of the spectrum, first considering the
behaviour up to ¢ = 2.85.

Moore’s analysis for the initial condition (4.1) gives that the Fourier amplitudes,
A, (), should behave as

—_—

1—i)

~ 1)k -3 1 1
A () = (—1) t(21r)‘f'k exp[k(1+3t+Inial)], 4.2)

fort < t,and k > 1. Asin Kr, this form is used as an Ansatz for the behaviour of the
numerically computed spectrum, though now the behaviours of the real and
imaginary parts of the solution are considered separately. Figure 3 shows the
evolution of the discrete Fourier transforms, X, (t) and Y,(¢), of ,(t) —jh and y,(¢) from
t =0 to ¢t = 3.0 at intervals of 0.15. As the solutions, z(p,t)—p and y(p,?), evolving
from the MBO initial conditions can each be represented as a sine series, their Fourier
transforms have a symmetry about £ = 0, and only positive k need be considered.
The most notable feature in the spectra is the very rapid temporal growth of the
high-wavenumber amplitudes.

To study the behaviour of the spectrum, which presumably reveals the form of the
nascent singularity, (4.2) is used as an Ansatz for it asymptotic decay. Assume that
fork> 1,

X)) = CxkPxexp(—axk), |Gt =Cyk?rexp(—ayk). (43a,b)

Rather than estimate, for example, the values of Cy, ay, and B by a least squares
fit to X, over some range of k (as in Sulem ef al. 1983; Kr; Baker & Shelley 1990),
these values are instead estimated by requiring that the form (4.3a) hold point-wise
at k—1, k and k+ 1. By taking a logarithm of both sides of (4.3a), this yields three
linear equations for the three unknowns a,(k), £x(k), and C (k). As (4.3a) should be
only asymptotic in %, the behaviours of the unknowns should be examined as k- 0.
Of course, in a numerical simulation there are the added constraints of having only
a finite number of amplitudes X, (3V), and having the various errors in their
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F16URE 4. The fits to a,, By, o, and §, using Ansatz (4.3), with a = §, from ¢ = 0.90 to 2.85 at
intervals of 0.15. Decreasing values in the k-independent region of a, and a, corresponds to
increasing time. An increasing range of upward concavity for #, and §, corresponds to increasing
time. The dashed line is at §.

approximation, such as aliasing, truncation, and round-off. Each of these sources of
error limits the range in K over which the fit is expected to be accurate. However,
this technique allows for a more precise study of the behaviour of the spectrum by
removing some of the subjective biases present in a least squares fit (such as choosing
the range in k). It will be seen presently that (4.3) is not fully adequate in deducing
the behaviour of the spectrum, and will have to be modified.

Note that Moore’s analysis gives the values of both £, and Sy to be §, independent
of k and ¢, and that ay and a, are equal, independent of k, and monotonically
decrease as functions of ¢{. Figure 4 shows the fits to ay, fx, @y and By as functions
of k, from ¢t = 0.90 to 2.85 at intervals of 0.15. Note that for a large range of k, both
oy and a, show little dependence upon k, and that as time increases, the &
independent values of ay and a, tend towards zero. Also, the values of ay and a,
in the k independent range coincide in value. All of these features are consistent with
Moore’s analysis. The fits to 85 and fy, at first glance, are quite different from the
uniform £ predicted by Moore’s analysis. However, it appears that over some range
of k, the fit to By and Sy is decreasing and concave upwards. If this is the true
behaviour of the fit in the absence of approximation errors, it might suggest that £
and g, are asymptotic to some value. The value of § has been included suggestively
as a dashed line in the graphs. Recall that Moore’s analysis is only asymptotic in
large k, and that higher-order effects excluded in the analysis may influence the fit.

A partial inclusion of such higher-order effects is obtained by modifying the Ansatz
(4.3). The real part of the solution serves as an example. Assume that x(p)—p has a
pair of branch singularities of the form (2.13) in its analytic continuation, but now
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Ficure 5. The fits to ay, fy. a, and By, now using Ansatz (4.4), for a =1, at the same

times as figure 4.

of an unspecified order Sy — 1, rather than §. The asymptotic decay of X, is governed
by these singularities. The first two terms of the large % expansion for X have the
form

IXi(6)l = Cx kPxexp (—ay k) + Dy k™ #x*D exp(—ay k)

= Oy kPxexp (—ay k) (1 +D—1)

Cxk
D,1
or In|X, () =InC,—fylnk—ayk+In 1+C_E
x
D1
=InC,—fyInk— an+C +0() (4.4)
xk

Here ay is the distance of the branch singularities from the real p-axis. Dropping the
O(1/k?) term, (4.4) is the new form used in the fit to the spectrum, and requires fitting
to four consecutive points to yield four linear equations for the four unknowns.
Figure 5 is the same as figure 4, except that Ansatz (4.4) is now used. It is clear that
in the range for which £y and g, were concave upwards in the old fit, they were
asymptotic to 3. The fits for a y and ay, from (4.4) are v1rtually identical to those from
the old fit. Note that the estimates for £y and fy using Ansatz (4.3) (i.e. only the
first-order term) are asymptotic to § from above. This may account for the too high
estimates of the algebraic decay given by MBO. Note that ¢ = 2.85 (the last time
shown in figure 4) is approximately the singularity time predicted by (4.2), and that
the k independent values of a y and ay are well away from zero. This implies that the
solution is still smooth.



Stngularity formation in vortex-sheet motion 509

Wy g

k
4

0 64 128 0 64 128
k k

Figure 6. The fits to a,, Sy, a, and g, using Ansatz (4.4), for a = 1, from ¢ = 0.60 to
1.4 at intervals of 0.1. The dashed line is at $.

That Moore’s analysis is valid away from the singularity time appears to be
independent of the amplitude of the initial condition. Figure 6 shows the fits to ay,
Bx, ay and By, using Ansatz (4.4) for a = 0.5. from ¢ = 0.6 to 1.4 at intervals of 0.1.
Here, the calculation used N = 256, At = 0.0025, and & = 107%. This timestep is
sufficiently small so that the Hamiltonian is again conserved to at least 10 digits
throughout the calculation. Moore’s analysis gives the estimated singularity time as
t. & 1.44. The same asymptotic behaviour of the spectrums is observed here as for the
smaller-amplitude case: the algebraic part of the decay is k¥, the & independent
ranges of &y and a, show a decrease in value toward zero as time increases, but with
these values still non-zero at the critical time predicted by (4.2). Behaviour in
accordance with Moore’s analysis is also observed for @ = 0.25 and 1.0 at times away
from their respective singularity times.

It is appropriate here to examine the influence of N and & upon the results. This
has been done most completely for the case a = 0.5. Performing such a study for each
value of a considered is beyond our resources, but it demonstrates that a high level
of precision and a small value of the filter level & are necessary to capture the correct
form of the nascent singularity.

As discussed at the beginning of this section, it is both these quantities that
determine the number of modes that participate in the calculation at some time.
Again, assume that the spectrum is given and is monotonically decreasing as a
function of k. If § >0 is fixed, then for sufficiently large N it will be that
K, = min (K,,}N), that is, the number of non-zero modes (and the accuracy of the
approximation) is determined mainly by the value of 8, not by the value of N. This
result is very much realized in these calculations, and has a marked effect on the
ability to deduce delicate information about the singularity formation, as revealed

17-2
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FiGure 7. (a) The fit to ay(k) at ¢ = 1.4 for different values of N and 8, for & = 1. Each box shows
the fit for a fixed value of § (1074, 1072 and 10%%), N =— —— 64; ———, 128 and ——, 256. The

horizontal dashed line is at 0.30. (b) The fit to 8,(k) at ¢t = 1.4 for different values of N and 8, as in
(a). The dashed line is at 3.

through the asymptotic decay of the Fourier spectrum. Figure 7(a) shows the
influence of both NV and & upon the fit to a (k) at ¢t = 1.4, for a = 0.5. In each box, &
is kept fixed, and N is varied (N = 64 (solid—dashed), 128 (dot—dot), and 256 (solid)).
The dashed line is at what seems to be the k-independent value of &, from the fit
(0.30). Consider the top box, for which § = 107 and K, ~ 65. It appears that as N
is increased, the fits to oy (k) collapse onto a limiting curve, which if the above
argument is valid, should be obtained for those fits in which K, < IN. This is the case
for both N = 128 and 256, for which the fits lie upon one another. Now, examining
the other two boxes for which é = 107 and 6 = 10~%, it is clear that the limiting
behaviour is strongly dependent upon 8, and that as ¢ is decreased the limiting curve
has a broader and broader range of k-independent values. This same behaviour is
even more pronounced in the fit to #, shown in figure 7(b). Here the dashed line
is at 3, the k-independent value of Sy (k) suggested by Moore’s analysis. As in figure
7(a), as N is increased, and ¢ decreased, (k) evinces a broader and broader range
of k-independent behaviour, and apparently asymptotes to £. Similar behaviour is
observed in the fits to a, (k) and By (k).

If the behaviour observed in figure 7(a, b) persists as N becomes larger and &
smaller, then it provides a very strong validation of Moore’s analysis for the
intermediate time behaviour of the vortex sheet. It is also clear that the higher
precision was necessary to convincingly demonstrate that the spectrum behaves
asymptotically as in (4.2). A similar analysis will be performed (again, for a = })
very near the singularity time.
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Ficurk 8. The fits to ay, By, @, and B, using Ansatz (4.4), for a = §, from ¢ = 2.85 to 3.0 at
intervals of 0.025. The dashed line is at §.

4.2. Vortex sheet behaviour near the singularity time

We now turn to the behaviour of the vortex sheet near its singularity time, again
considering first the smallest-amplitude case, a = 0.125. Recall from §4.1 that
Moore’s analysis predicts ¢, =~ 2.84, while the numerical results suggest that the
solution is still analytic at ¢ = 2.85. From the numerical results we predict the true
singularity to be ¢, = 3.015, and now consider the evolution up to ¢ = 3.0.

The results given here have N = 512, At = 0.005, and & = 107%. It was too costly
to perform such a high resolution calculation from ¢ = 0, so the following method was
used : an initial condition, for the MPVA with N = 512, was generated by doubling
the N = 256 data at ¢ = 2.55 through the discrete Fourier transform. Doubling in this
way gave some improvement in the results near the critical time, when K; > iN.
However, doubling the number of points again, to 1024, at ¢ = 2.85, using the same
criteria and method as above, led to no change in the results, suggesting an error
dominated by the value of 8, not of N. Again, the Hamiltonian is conserved to at least
ten digits throughout the calculation.

Figure 8 shows the fits to ay, By, @y and By, using Ansatz (4.4) for a = 0.125, from
t = 2.85 to 3.0 at intervals of 0.025. From the fits to ay and ay it is apparent that the
motion of the sheet is becoming increasingly difficult to resolve. For sufficiently small
k, say k < 64, the fits are still quite flat, but show a slight positive slope for larger k.
Nonetheless, the values of a, and ay show a general decrease towards zero as time
increases, and again coincide in value. Over the range where all « are flat, £ is again
fit well by 2, shown as a dashed line in the graph. On the other hand, the fit
to By shows a divergence away from § to some larger value. Choosing k = 23 as
representative, figure 9 shows the fits to a, and g, as functions of time. The trend
of ay, towards zero is clear. Extrapolations to zero give the previously stated estimate
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Fioure 10. The evolution of x, (p,t) and y,,(p,?), for a =}, at the same times as in figure 8.

of the critical time as £, &~ 3.0151 0.005. The fit to #, shows a range in time over
which the fit is close to £, but as the singularity time is approached, an increase in its
value is observed. By extrapolation we have that 8, = 2.6 at the singularity time.
This implies a slightly weaker divergence in y(p,?.) than Moore’s analysis predicts,
though in any case both z,,(p,t) and y,,(p,t) diverge as the critical time is
approached. Figure 10 shows x,,(p, ) and y,,(p, ), at the same times as figure 8. The
behaviour here is consistent with the difference in the estimated values of #, and gy
at t =t.; x,,(p,?) is diverging more quickly than y, ,(p,t) as the singularity time is
approached.

A similar behaviour is observed for evolution of the sheet with a = 0.25. In this
case, the extrapolated value of f is approximately 2.7, rather than 2.6, again giving
a slightly weaker divergence in y,, than Moore’s analysis predicts. A more
pronounced difference in behaviour is seen at larger values of a, where y,, can
apparently remain bounded at the singularity time.

We examine now the behaviour of the vortex sheet near its singularity time for the
case a = 0.50. The results given here have N = 512 with At = 0.0025, and N = 1024
with At =0.00125. In both cases, § = 107?°. Here the number of computational
points are first doubled from the N = 256 data at ¢t = 1.3, and then again at ¢t = 1.5
using the same criteria and method as discussed above. The singularity time is
estimated to be f, & 1.615. The N =512 results are shown up to ¢t =1.6. The
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Ficurk 11. The fits to ay, By, @y and f§; using Ansatz (4.4), for a =}, ,t=141t0 1.6 at

intervals of 0.025, and are fit from N =512 data. ——, t = 1.6, 1.6025 and 1.605, are fit from
N = 1024 data. The dashed horizontal lines are at § and 3.

resolution study presented in the next subsection indicates the computed solution
with N = 512 has at least five significant digits of accuracy at this time. By ¢ = 1.605,
the width of the strip of analyticity is almost half of that at ¢ = 1.6. It isfrom ¢ = 1.6
to ¢t = 1.605 that the N = 1024 data is shown. However, as with the ¢ =} case,
increasing the number of points to N = 1024 does not yield further increases in the
range over which the fits appear to be correct. This suggests an error that is
dominated by the size of 8 rather than of N. Again, the Hamiltonian is conserved to
at least ten digits throughout the calculation, and further decreases in the timestep
do not change the results.

Figure 11 shows the fits to ay, fx, ay and By, using Ansatz (4.4). The solid curves
are from ¢t = 1.4 to ¢t = 1.6, at intervals of 0.025, and are fit from the N = 512 data.
Closer to the singularity time are the dashed curves, fit from the N = 1024 data,
which are from ¢ = 1.60 to 1.605 at intervals of 0.0025 (i.e. the N = 512 and N = 1024
results overlap at ¢t = 1.6). A horizontal line at §, = 3 has been added to the lower
right-hand figure.

The difference in behaviour of the fits for the algebraic decay is very apparent. £y
is still well fit by a value of §, which would yield a dlvergent second derivative. The
fit to B, suggests a trans1t10n from an algebraic decay of k&3 for Y,(t), to decay close
to k3. That the transition begins at intermediate wavenumbers, then spreads
upward to higher wavenumbers, is reminiscent of the behaviour observed by Sulem
et al. (1983) in their study of singularity formation in the inviscid Burgers’ equation.
There, two square root singularities (from above and below, as in (2.13)) collide on
the real axis to form a cube root singularity in the solution. The transition to a
spectral decay associated with a cube root singularity begins at intermediate
wavenumbers, and spreads upwards as the singularity time is approached. To have
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Ficure 12. The evolution of @, and §y at k = 23, for a = }. The dashed line is at
the estimated singularity time of 1.615.
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F1cURE 13. The evolution of z,,(p,t) and y,,.(p,t), for a =}, at the same times as in figure 11.

precisely a k~® decay at the singularity time would be consistent with y,,(»,t,)
having a step discontinuity, and remaining bounded. However, it appears that the
fit to Sy isrising above 3 as the singularity time is approached. Again choosing k = 23
as characteristic, figure 12 shows the fits to o, and f#; as functions of time. Again,
the decrease of ay towards zero is evident, and extrapolations to zero of ay and ay
give t, = 1.615+0.005. The transition of fy from $ is also evident, and the fit to 8
exceeds 3 near the singularity time. Extrapolations to the singularity time gives
values of fy close to 3.1, suggesting that y,,, is both bounded and continuous near
the singularity time. Figure 13 shows x,,(p,t) and y,,(p,t), at the same times as
figure 11, though for the sake of clarity, the N = 1024 curves are solid rather than
dashed. As is consistent with Moore’s analysis and its apparent spectral decay (see
figure 11), x,,(p, t) is diverging at p = =, in the form of an infinite jump discontinuity.
However, in contrast to the smaller-amplitude cases, and in agreement with having
a spectral decay of at least k=3 at the critical time, y,,(p,t) is not diverging, but
remaining bounded as the singularity time is approached (its derivative y,,,(p,?) is
becoming infinite as ¢t >¢,; extrapolations of 1/x,,,,(%,t) or 1/y,,,(%,¢) to zero gives
estimates for the critical time very close to those obtained by extrapolations of oy
or ay to zero.)

The last case considered is with @ = 1.0. Here the form of the singularity in y(p,?)
seems to have changed more profoundly. As with the smaller-amplitude initial data,
the fits to B8y are well-matched by £, even up to the singularity time. The fits to o,
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Ficure 14. The evolution of x,,(p,t), Z,,,(p,?), ¥,,(P,¢) and y,.(p,?) for a = 1, from ¢t = 1.025 to
1.06875 at intervals of 0.00625. The inset in the lower left-hand box is an enlargement of

Y,o(P, ) about p = 7.

o

are flat over a large range in k, and in time show a monotonic decrease to zero.
Extrapolations of a, to zero give {, = 1.10. Again, at intermediate times, the fit £}
is also well-matched by £, but then begins a transition away from £, apparently to
larger values. However, as the singularity time is approached this fit becomes
incoherent, and shows no uniform behaviour in g,. Figure 14 shows x,,(p,?),
Zppp(D: 1), Ypp(p, t) and y,, ., (p, ) from ¢ = 1.025 to 1.06875 at intervals of 0.00625. An
enlargement of y,,, about p = n is included in the upper left-hand corner. For the
times shown, N = 1025, § = 107% and At =0.00125 (the usual doublings of the
N = 256 data have been performed).

The behaviour of x,,,, (and x,,,,,) is similar to that of x,,, for smaller values of a as
their singularity times are approached (for example, see the left-hand boxes in figures
10 and 13). Also for the smaller values of a, both z,,, and y,,,, grow and diverge
positively at a single maximum at p = . This behaviour has now changed. For the
first three times shown, y,,,,,, has a single positive maximum at p = n. This maximum
then bifurcates into two nearby, local maxima, and the newly created minimum
between them decreases rapidly in value. The formation of the negative extrema at
p = nis reflected in the small structure which develops in y,,, (magnified in the inset).
This change in behaviour may explain the breakdown of the Ansatz in this instance.
The choice of the Ansatz for the large k behaviour of the spectrum (Y, = Ak e™*)
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FicureE 15. (a) The fit to a, (k) at ¢ = 1.6 for different values of N and 8, for a = 1. Each box shows
the fit for a fixed value of § (1074, 1072 and 1072%), as N =——— 64; ———, 128; ,256; ——,
512 (bottom box only). (b) The fit to 8, (k) at ¢t = 1.6 for different values of N and 4, as in (a). The
dashed line is at 3. (¢) The fit to 8,(k) at ¢ = 1.6 for different values of N and 4, as in (a). The dashed
lines are at § and 3.

is predicated upon very specific assumptions on the type and location of singularities
in the complex extension of the solution. Namely, it is assumed that above (and
likewise below) the real axis, there is but one singularity closest to the real axis, and
that it is of branch type (see 2.13). It seems likely that one of these assumptions has
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broken down, and that the incipient singularity structure is not well described by
(4.4). However, we are unable to supply a definitive cause. Further, we found it
difficult to resolve this structure further towards the singularity time reliably, but we
do note that the observed behaviour has persisted under changes in resolution.

4.3. The dependence upon numerical parameters near the singularity time

At t = 1.6, immediately before the posited singularity time for a = 0.50, the effect
upon the results of varying both N and ¢ is examined. An assessment of the errors of
the calculations is also made.

Using Ansatz (4.4), figures 15(a), 15(b) and 15(c) show ax(k), Bx(k), and By(k),
respectively, for the same values of N and ¢ as in figures 7(a) and 7(b), with the
addition of the fits to the data with N = 512 and § = 1072® (the dot—dash curve in the
lower box). Recall that this calculation was started from ¢ = 1.3, at which time
K, < IN, by doubling the data with N = 256. The results for ay (k) are similar to those
for ax(k) and are not shown. At this time, even though K, > 3N for all the various
cases shown, the value of the cutoff & plays a large role in behaviour of the fits. This
influence is perhaps least seen in the behaviour of ay, which governs the dominant
(albeit vanishing) exponential decay of the spectrum. The fits with N = 64 and 128
show relatively little change as d is decreased. For N = 256, decreases in & give
additional smoothness and flattening of the fit. As figure 15(b) shows, fits to
determine the algebraic part of the spectral decay are much more sensitive. Indeed,
it is only for N = 64 that the fits are independent of &, and these fits are poor at best.
For 8 = 107 (the upper box), the fits at both larger values of N are dominated by
the size of 8. The N = 128 fit has assumed its § independent form with § = 107°, and
the N = 256 fit perhaps only with § = 1072, It seems typical of a fit, at a particular
value of N, to decrease more rapidly away from § as the fit loses its dependence upon
8. For example, the fit with N = 256 has a larger second derivative as it falls away
from § with § = 10723, than at the two larger values of 8. By this somewhat subjective
standard, it appears that the fit with N = 513 and 6 = 107* has not yet reached a
form independent of 8. This is evident as well in the fits for 8y in figure 15(c), where
the increase to N =512 at 8§ = 1072 gives little apparent increase in asymptotic
behaviour. Nonetheless, the fits to determine the algebraic part of the decay
generally seem to converge to some asymptotlc form as N is increased and ¢ is
decreased. For S this is a value of §, in accordance with Moore’s theory, while for
fy the asymptotic form is related to a transition in the spectral decay away from £~ :,

Through figure 16 an assessment is made of the errors in the calculations for a = }
Only the calculations with & = 1072 are considered. Neglecting time- dlscretlzatlon
errors and assuming that the MPVA is a convergent approximation, an estimate for
the spatial error in 2} (the superscript denotes the number of points in the spatial
discretization) is given by

LNV = max |22 —2 (1), (4.5)

0<ISN-1
For m > 1, L™"'¥ measures the maximum difference between the two computed
discrete solutions, z™¥ (with mN points) and z¥ (with N points), at their N common
values under the discretization of p.

In figure 16, the negative logarithm of this quantity is plotted. In the left-hand
box, the dashed curves are for L2%%:% and L25%1% for 0 < ¢ < 1.65, and the solid
curves are L51%.84 [51%.128 gnd L5122 on 1.3 <t< 1.65. Again, the N =512
calculation was that started at ¢t = 1.3 by doubling the N = 256 data. The N = 128
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Fioure 17. The error in the right-hand box of figure 16 is fit with the form £ ~ 4 =¥ /N? at
times near the singularity time. (a) The value of a in the fit; (b) the value of . ——, ¢ = 2.

error is that lying above and below the N = 64 and N = 256 errors, respectively. The
evidence is certainly that the method is converging in N up to the singularity time
(shown as a vertical long-dashed line). Note that each of the three curves decays as
the singularity time is approached. This is consistent with the error bound given in
(3.5), in which the decay rate in the exponential error scales linearly with an
analyticity strip width. The fits to ay and a, suggest that the collapse of the
analyticity strip width is nearly linear.

The right-hand box shows L3*¥ (again under the negative logarithm) on a
horizontal logarithmic scale for N = 64, 128 and 256, from ¢t = 1.3 to 1.65 at intervals
of 0.25. The dashed curves are for { = 1.3 and ¢ = 1.6. Faster than exponential
convergence is suggested as these error curves have both positive slope and upward
curvature as N is increased, up to and including ¢ = 1.6. The lack of curvature of the
topmost curves occurs because the errors for N = 256 are at the level of the Fourier
filter (107*°). Note that for ¢ = 1.625 and 1.650, the slope of the error curve is
negative, implying again that convergence is lost for this method beyond the
singularity time.

The error bound given in (3.5) is only an upper bound. An optimal error estimate
might be expected to have the form E ~ 4 e *¥ /N? for large N. Figure 17 shows the
fits for a and ¢ using the three errors in the right-hand box of figure 16, for times close
to the singularity time. The values of a agree very roughly with half the analyticity
strip width, as estimated from the spectrum. This is consistent with the MPV A using
only half of the points to evaluate the Birkhoff-Rott integral. The positive values for
g demonstrate the faster than exponential convergence. As remarked in §3, the
MPVA has an error of O(1/N) to the Birkhoff-Rott integral at the singularity time
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for the singularity posited by Moore. As the Moore singularity appears to be the
dominant one in this case, and the position is one order smoother than the velocity,
we might expect to find ¢ = § in the position error (at least at the singularity time).
The fitted values for ¢ are actually closer to 2, except at the last time ¢ = 1.6 for which
we have ¢ ~ 1.3. This suggests that even at the singularity time (though presumably
not beyond), the MPVA is convergent to the sheet motion. As with the fits to the
spectrum, higher-order terms may need to be included in the fit to get better
estimates for these values. In any case, the positive values for @ and ¢ near the
singularity time verify the convergence of the method.

Near the singularity time, the maximum error always occurs very close to p =,
the location of the nascent singularity. The maximum error cannot occur precisely
at p = m as this point is a fixed point of both the continuous and discrete flows. At
t = 1.6 the maximum error of the N = 256 data from the N = 512 data occurs at
j = 129, or one grid point to the right of p = n. The value of this error is 5.0 x 1077,
and the two calculations (N = 256 and 512) agree to five significant digits. Given the
apparent convergence at this time, the error for the N =512 calculation is
presumably less. If we use the values of @ and ¢ from figure 17 to estimate this error,
we find as its value 3.7 x 107°.

All of the calculations discussed in this section used a fourth-order, Adams—
Moulton, predictor—corrector method with a timestep of At = 0.0025. All indica-
tions are that the results are well-resolved in time. For example, halving the
timestep for the N =512 calculations from ¢ = 1.3 gave a maximum difference
between the two calculations of 1.2 x 1078 at ¢ = 1.6, and introduced no change in the
results. The results reported here are also seen using the formulation (3.7) of the
Birkhoff-Rott equation together with the alternate point quadrature. Additionally,
the point-vortex approximation (PVA) has been implemented, and again consistent
results are seen. The PVA calculations also showed a clear O(1/N) convergence to the
MPV A results near the singularity time (again ¢t = 1.6).

4.4. Further considerations

While there are important differences between analytic prediction and numerical
results, the general mechanism by which a planar vortex sheet becomes singular does
not change. About a point along the sheet there is a rapid compression of the
Lagrangian marker particles along the sheet. This compression is measured by ¥(p, ),
the true vortex-sheet strength, which is defined by

Y(P) 46
.0’ (4.6)

where s, = (23, +y2p)%. s, is the derivative of arclength with respect to the Lagrangian
variable p, and is an infinitesimal measure of the distance between Lagrangian points
on the sheet. Thus, as the particles become compressed along the sheet about some
point, the value of s, decreases there, and ¥ increases. Recall that 7 gives the jump
in tangential velocity across the sheet. It is because the vorticity must remain
confined to the sheet and does not have degrees of freedom of smoother vorticity
distributions, which can bulge outwards and form a vortex (Baker & Shelley 1990),
that this compression leads to the formation of singularities. This is illustrated in
figure 18, which shows 7 as a function of the signed arclength of the sheet from p ==,
from t = 1.3 to t = 1.6 at intervals of 0.05, for the case a = 0.5. y is given initially by
y(p,t = 0) = —p+3icos(p) (dashed). Around the local extremum at p =m(s=0),
7(p,t) becomes concentrated, and increasing in amplitude. There is a corresponding

P(p,t) =
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Ficure 18. The evolution of (s, ), for a =1, from ¢ = 1.3 to 1.6 at intervals of 0.05, as a function
of the signed arclength from p = m. Increasing amplitude corresponds to increasing time. The
dashed curve is $(s,t = 0).

decrease in its amplitude away from the centre, as the area beneath 7(s) over a period
is the circulation and is a conserved quantity. Moore’s analysis predicts that at ¢ = ¢,
¥(p.t) is finite, with a square-root cusp at p = . As the singularity in 2(p, ) remains
of the form predicted by Moore, and that in y(p,t) only weakens, this conclusion
remains unchanged. From (4.6), the time rate-of-change of ¥ is given by

d . P
a (p3t) = _7(p’t) [s(p,t)-us(p, t)]7

d ,
or a‘yz(p’ ) 7 p! )[S(P t) s(pvt)]’ (47)
where s = (x,,y,)/s, is the unit tangent vector to the sheet, and u, = v,)/8, With

(u(p), v(p)) the veloclty of a Lagrangian particle on the sheet determlned from (2.1).
From (4.7), it is seen that J(p,?) increases in magnitude only if s(p,t)-u,(p,t) <0,
or equivalently, if s and u, are anti-aligned. Our results indicate that at the
singularity time, s-u, diverges as the inverse square root about p =m. More
specifically, at ¢ = ¢, s and s, exist and are well-defined everywhere along the sheet,
but u, diverges as the inverse square root at p = m. Thus, at the singularity time, 7
has finite value, but infinite temporal rate of change.

It can also be concluded that the velocities on and about the sheet remain bounded
at the singularity time. In particular, the velocities immediately above and below the
sheet at p = m, which is also a stagnation point of the sheet motion, can be given
simply as

ui | p=n — %’);S,
and thus remain bounded. However, the strain rates in the fluid adjacent to the sheet
do diverge. The conjugate velocity at a point 7, not on the sheet, is given by

1 (" y(g)dg
* — (g— -
¥, = w—iv)l, =g~ et (4.8)
To calculate rates-of-strain, we need to find d¢*/dy which can be given as
dg* 1t (*~d [Y(Q)] dg
= = 4.9
a7 5, gl 0] =) )
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Ficure 19. (a) The evolution of the extensional rate-of-strain at p = nfora = {. ——, t = 1.615. (b)

The evolution of the angle between the principal axis of compressional strain and the tangent
vector to the sheet (lower curve), and the angle of the principal axis of extensional strain to the z-
axis (upper graph). ———, t = 1.615, angle = ix.

This follows by exchanging derivatives with respect to # for derivatives with respect
to ¢ within the integral, and then performing an integration by parts. Letting
n—z(p)%, i.e. from above and below, the Plemelj formula (Carrier ef al. 1966, p. 414)

yield
UL T 11 P L 171 T
| s 2@ @) 2 | gl ¢

We now note that

dg* 1 '
% )= g(up(p)—wp@))
=Mipj+w_d_[7(9)]i it
sp(p)27ti —o dq zq(q) z(p)_z(q)’ (4.11)
ag* 5t i[)’(ﬁ)] 5,(p) dg* N
" A7 |zt * 22,(p) dp|2,(p) +zp(P) ds (®). (4.12)

In particular, at p =, y(p)/z,(p) is an even function, and the first term is zero,
leaving

dg*
dy

_ 8p(m) dg*

) ds (). (4.13)

7=z(mt

Thus, at p = w, the straining flows above and below the sheet are equal. By our
previous remarks, at least the real part of dg*/ds is diverging. This leads to the
conclusion that the strain rates are also diverging. Also note that (4.11) allows the
evolution of 7 to be related to the local strain rates about the sheet, which are
themselves determined globally.

It is of interest to examine the principal axes of strain at p = m, with their
associated rates-of-strain, as calculated from (4.11) and (4.13). The integral in (4.11)
can again be calculated by an alternate point quadrature rule, and by the same
arguments, is again a spectrally accurate approximation so long as the solution 2(p, ¢)
is analytic. Recall that the strain rates must add up to zero, and thus come as plus
and minus pairs (extensional and compressional rates of strain, respectively), and
that the associated principal axes of strain are orthogonal. Figure 19(a) shows the
extensional (positive) rate-of-strain at p = x, for a = 0.5. It is clearly diverging as
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F1Gure 20. The same as figure 19, except that a =1, and the vertical lines are at ¢ = 3.015.

t—>t,, which is included as a dashed line in the figure. Figure 19(b) contains two
graphs: the lower graph shows the angle between the principal axis of compressional
rate-of-strain and the tangent vector to the sheet, at p = 1. As the flow evolves, this
angle decreases, implying increasing advection of vorticity towards this point.
Coincident with this advection, the rate is also diverging, as shown in figure 19(a).
The upper graph (figure 19(b)) shows the angle which the principal axis of
extensional rate-of-strain axis makes with the z-axis. Near the singularity time,
when the rates-of-strain are diverging, the direction of this axis overshoots an angle
of §n, shown as a horizontal dashed line. This perhaps provides some explanation as
to why the y-component of the solution is not diverging as quickly as the z. The
singularity time, as calculated from the simulations, is again included as a dashed
line. This behaviour is independent of amplitude, as seen in figure 20, which shows
the same quantities, but for a =0.125. Again, near the singularity time, the
extensional rate-of-strain overshoots an angle of m at the singularity time, but by a
lesser amount. This is consistent with the difference in singular behaviour for the two
amplitudes studied here.

5. Concluding remarks

The purpose of this work was to examine the generality of Moore’s analysis in
describing vortex-sheet motion and its associated singularity formation. It
demonstrated that Moore’s analysis is valid under the assumptions of its derivation.
For small-amplitude data at times away from the singularity time, Moore’s analysis
correctly described the form of the nascent singularity as two branch points of order
3, symmetrically the real p-axis. This was done in detail for the MBO initial
conditions. Calculations from the initial conditions considered by Kr (see 2.15)), for
a particular value of ¢, have shown also a similar correspondence to Moore’s analysis.
In addition, it appeared that Moore’s analysis well-described the initial motions of
sheets with large initial data. However, at least for the range of amplitudes
considered here, Moore’s analysis did not precisely give the actual form of the
singularity. At the singularity time, the real and imaginary parts of the solution
become differentiated in behaviour, which was not predicted. Again, the calculation
from an initial condition used by Kr shows a similar, differentiated behaviour near
the singularity time.

Some calculations have also been performed for the initial condition used originally
by Moore for his asymptotic analysis (i.e. initial condition (2.8)). Setting ¢ = 2né, we
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have considered initial amplitudes from € = 0.01 down to 0.000625, by successive
halvings. Curiously, for each amplitude considered we have found two singularities,
rather than one, forming in both x,, and y,,. The distance between them (in p)
decreases as € decreases. Kr has similarly noted, for initial data (2.15), that if the
initial amplitude were sufficiently large then two singularities would form on the
sheet. Using consistent units, Kr found there were two singularities for é = 0.08
while for € = 0.01 there was only one. This is probably a similar phenomenon.
Extrapolations to zero of the separation distance between the two observed
singularities suggests that the two singularities will coalesce into one for some value
of € between 0.00027 and 0.00035.

The differences with Moore’s analysis at the singularity time is presumably due to
its exclusion of higher-order corrections which have become important. G. Baker
(private communication) has performed a version of Moore’s analysis for the inviscid
Burgers’ equation

%—?(x, t)+u(x, t)g—:(x, t) =0, (6.1)
with initial condition
Ug(x) = esinw,

and periodic boundary conditions. The method of characteristics gives that at
t.(€) = 1/(2¢), the solution acquires a cube root singularity at 2 = ©t of the form

u(x,t,) = ebd(m—z)i+ ¥, (5.2)

where ¥ contains less singular terms. Singularity formation in this context can be
interpreted as the symmetric approach of two square root branch points to the real
z-axis. They collide at « = & in such a way as to yield a cube root. Baker has found
that Moore’s analysis in this case correctly describes the initial approach and order
of the branch points, but incorrectly predicts that the form of the singularity remains
a square root, rather than the cube root. The failure of Moore’s analysis can be
directly attributed to higher-order terms dropped in the asymptotic analysis.

Moore’s analysis of the Fourier series, leading to the estimate of its asymptotic
decay in (2.11), actually arises as a second level of asymptotic approximation for
solutions of the Birkhoff-Rott equation. In Moore (1979), Moore first obtained from
(2.1) a simpler approximate equation, which he showed in Moore (1985) to be
equivalent to a system of two nonlinear conservation laws. It was upon this system
of conservation laws that the second asymptotic analysis was performed, and which
led to (2.11). A simpler derivation of Moore’s conservation equations is given in
Caflisch & Orellana (1986). It is possible that Moore’s equation will themselves
correctly describe the form of the singularity at the singularity time, and that the
fault in the analysis observed in this work lies with the terms discarded in the second
level of asymptotic approximation.

In their study of the motion of thin layers of constant vorticity, Baker & Shelley
(1990) established the relation between vortex sheets and asymptotically thin vortex
layers. By assuming that the limit of a thin vortex layer of mean thickness H < 1 is
a vortex sheet with true vortex-sheet strength 7, their asymptotic analysis gives

" 1
Y= _HT9 (5'3)

where T'is the local thickness of the layer as measured along the normal to the vortex
sheet. Here the total circulation on the period is normalized to —2n. This is the
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Ficure 21. The boundaries of a layer of constant vorticity of mean thickness 0.025, which the
vortex sheet models at t = 0 and ¢t = 1.6, for a = 0.5, constructed from relation (5.3): ———, vortex-

sheet positions.

intuitively appealing statement that 7 is the product of the vorticity (— 1/H) and the
local thickness 7. This relation can be reversed; given a vortex sheet, what is the
asymptotically thin vortex layer that it is modelling ? Figure 21 shows the bounding
profiles of a layer of constant vorticity, with H = 0.025, constructed using relation
(56.3) from the vortex-sheet data with a = 0.5 at t =0 (top box), and at { = 1.6
{(bottom box). Recall that ¢t = 1.6 is very nearly the singularity time for this case. The
position of the vortex sheet is included as a dashed curve. Here the aspect ratio of the
vortex layer is about 250:1. The figure shows that the initial perturbation in the
vortex-sheet strength for the MBO initial conditions corresponds to a local thickening
of the otherwise flat vortex layer. At t = 1.6, the concentration of y about p =7 is
reflected as a thinning of the layer away from the centre, and a further thickening
in the centre. Simulations of vortex-layer motion from such initial conditions are also
given in Baker & Shelley (1990), and show that after this point the vorticity reforms
itself into a rotating elliptical core, with attached trailing arms. Such behaviour is
apparently not accessible to solutions of the Birkhoff-Rott equation. However, the
vortex sheet does provide an understanding of the initial straining flows that
concentrate vorticity prior to their reforming into larger-scale vortex structures.

This work does not address the possible existence and nature of the vortex sheet
after the singularity time, but has instead focused on gaining precise information on
the form of the singularity. As has also been observed by Kr, no convergence of the
numerical solution was observed after the singularity time. Of course, the spectral
accuracy of the MPVA is lost in the present of singularities. At these later times, the
motion becomes dominated by rigid scale interactions, and is apparently chaotic. It
appears that mollification of some sort is necessary to study behaviour numerically
past the singularity time (Krasny 1986b; Baker & Shelley 1990). Such studies
indicate that the solution, if it exists, may have the form of doubly branched spiral.
It is known that measured-valued solutions exist globally for vortex-sheet initial
data, but the notion of such a solution is so general that it gives little information
about its specific nature. The scaling of vorticity concentrations in the study of thin
vortex layers by Baker & Shelley (1990) does not preclude the vortex sheet existing
as a classical weak solution after the singularity time (Diperna & Majda 1987).
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Explicit singular solutions have been constructed by Caflisch & Orellana (1989),
with y(p) = 1, which have the form

z(p:t) =p+80+77
where 8o = €(1—i){[1—exp(—i—ip)**"—[1 —exp(—i+ip)]**™},

¢ is small, r is a correction term, and » > 0. v = } would give the spatial structure of
Moore’s singularity at { = 0. The singularity found in this work is not of this form,
though it is quite possible that such a singularity could be constructed analytically.
Duchon & Robert (1988) have also constructed such explicit singular solutions.

Lastly, we end with a caveat. It is possible that Moore’s asymptotic results are
recovered only at yet smaller values of a than we have used here. Computing with
very small values of a will require more computing resources and perhaps different
methods. It appeared from the results that the smaller the value of a the less rapid
the fit to the spectra became asymptotic in its behaviour. To access yet more of the
spectrum with these methods, even more precise calculations will be necessary. It is
also possible that such calculations would benefit from the use of a symplectic time
integration method which would reflect the Hamiltonian structure of the modified
point-vortex approximation.
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