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Moore’s asymptotic analysis of vortex-sheet motion predicts that the Kelvin- 
Helmholtz instability leads to the formation of a weak singularity in the sheet 
profile at  a finite time. The numerical studies of Meiron, Baker & Orszag, and of 
Krasny, provide only a partial validation of his analysis. In  this work, the motion of 
periodic vortex sheets is computed using a new, spectrally accurate approximation 
to the Birkhoff-Rott integral. As advocated by Krasny, the catastrophic effect of 
round-off error is suppressed by application of a Fourier filter, which itself operates 
near the level of the round-off. It is found that to capture the correct asymptotic 
behaviour of the spectrum, the calculations must be performed in very high 
precision, and second-order terms must be included in the Ansatz to the spectrum. 
The numerical calculations proceed from the initial conditions first considered by 
Meiron, Baker & Orszag. For the range of amplitudes considered here, the results 
indicate that Moore’s analysis is valid only at  times well before the singularity time. 
Near the singularity time the form of the singularity departs away from that 
predicted by Moore, with the real and imaginary parts of the solutions becoming 
differentiated in their behaviour; the real part behaves in accordance with Moore’s 
prediction, while the singularity in the imaginary part weakens. In  addition, the 
form of the singularity apparently depends upon the initial amplitude of the 
disturbance, with the results suggesting that either Moore’s analysis gives the 
complete form of the singularity only in the zero amplitude limit, or that the initial 
data considered here is not yet sufficiently small for the behaviour to be properly 
described by the asymptotic analysis. Convergence of the numerical solution beyond 
the singularity time is not observed. 

1. Introduction 
A vortex sheet is a surface in an inviscid and incompressible fluid across which the 

velocity is discontinuous; it serves as a simple model of a high-Reynolds-number 
shear layer. Ideally, vortex-sheet motion could be used as the first term of the outer 
solution in a matched asymptotic expansions approach to studying high-Reynolds- 
number shear flows. Since the global existence and smoothness of a two-dimensional 
shear flow evolving from smooth initial conditions is guaranteed (McGrath 1967), a 
necessary condition for the success of such a program would be the global existence 
of this outer solution. However, there is now strong evidence that the two- 
dimensional vortex sheet acquires a singularity a t  a finite time well before the 
appearance of the large-scale roll-up commonly associated with shear layers. The 
possible nature and existence of vortex-sheet motion beyond the singularity time is 
an open question. 

The first analytical evidence of singularity formation was provided by Moore 



494 M .  J. Shelley 

(1979, 1985). For a sinusoidally perturbed sheet with uniform strength, Moore 
performed a small-amplitude perturbation analysis of the Birkhoff equation, which 
governs vortex-sheet motion. His analysis indicated that a t  a finite time the 
curvature of the sheet profile diverged, with the sheet strength remaining finite, but 
acquiring a cusp. More specifically, his approximate analysis indicated the presence 
of a pair of branch singularities of order $, above and below the real axis in the 
extended Lagrangian variable plane, which moved to the real axis in a finite time. 
For specially chosen entire initial data, Meiron, Baker & Orszag (1982) (hereinafter 
referred to as MBO) found consistent results by studying the Taylor series in time 
constructed numerically from the Birkhoff equation. Using the point-vortex 
approximation and a Fourier filter to control the errors induced by round-off error, 
Krasny (1986~)  (hereinafter referred to as Kr) studied direct simulations of vortex- 
sheet motion from an unstable, linear eigenfunction initial condition, and also found 
results consistent with Moore (1979). Moreover, before the singularity time, the 
numerical solution converged, but convergence was lost beyond the singularity time. 
While neither of these studies was able to convincingly identify the order of the 
branch, they both presented numerical evidence that its order was between 1 and 2. 
Caflisch & Orellana (1989) have found a continuum of explicit solutions to the 
Birkhoff equation which display finite time singularities. However, these solutions 
have initial data which are not entire, but which begin with branch singularities in 
the extended Lagrangian variable plane. The order of the branch singularity is a free 
parameter, and the mechanism by which a singularity is chosen by the general 
initial-value problem is not known. None of these studies indicate whether the sheet 
still exists beyond its singularity time. Other results concerning existence and well- 
posedness of vortex-sheet motion can be found in Sulem et al. (1981), Caflisch & 
Orellana (1986) and Caflisch & Orellana (1989). 

A precise understanding of singularity formation in vortex-sheet motions is 
important for several reasons. First, vortex sheets are often used in models of fluid 
motions, and it is important to understand the limits of their applicability. For 
example, vortex sheets have been used successfully in the study of large-amplitude 
surface waves (see, for example, Longuett-Higgins & Cokelet 1976; Baker, Meiron & 
Orszag 1982), and in the Rayleigh-Taylor instability for a fluid falling into vacuum 
(Baker, Meiron & Orszag 1980; Baker et al. 1987). These all correspond to interfacial 
flows with an Attwood ratio of 1 or -1 .  Conversely, researchers have had 
considerable difficulty in simulating the Rayleigh-Taylor instability in fluids with 
non-unit Attwood ratio (e.g. Baker et al. 1980). It is believed that these difficulties 
are related to the formation of singularities in the vortex sheets modelling the 
interface between the two fluids of different densities. Secondly, Krasny (1986b) and 
Baker & Shelley (1990) have raised the intriguing possibility that the vortex sheet 
may exist after its singularity time as a doubly-branch spiral. Clearly then, a detailed 
knowledge of the formation of the singularity is crucial in deducing the form of the 
spiral, or if it is even an allowable possibility. Lastly, the mathematical analysis of 
the vortex sheet singularity is greatly simplified by knowing that it actually does 
have the form suggested by Moore (Caflisch, private communication). 

It is known that measured-valued solutions exist globally for vortex-sheet initial 
data (Diperna & Majda 1987), but the notion of such a solution is so general that it 
gives little information about its specific nature. It is also possible that vortex-sheet 
motion still exists beyond its singularity time as a classical weak solution to the Euler 
equations, though perhaps it is no longer described by the Birkhoff-Rott equation. 
Consistent discretizations to the Birkhoff equation have failed to yield reliable 
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results beyond the singularity time, so alternative methods have been employed. 
Krasny (19863) modified the Birkhoff equation by smoothing the singular 
Biot-Savart kernel through convolution with an approximate delta-function of 
width 6. Past the singularity time for the vortex sheet, and for a fixed value of 6, 
solutions to the smoothed equation reveal a doubly branched spiral structure, with 
the number of turns of the spiral increasing, apparently without limit, as S is reduced. 

In Baker & Shelley (1990), the vortex sheet is replaced by constant and finite 
vorticity contained within a thin layer of mean width H .  The limiting behaviour of 
such vortex layers is then studied numerically, as H is reduced, to determine the 
possible nature of the vortex sheet past its singularity time. Beyond the singularity 
time, for each value of H ,  the vortex layer forms an elliptical core with attached, 
trailing arms. In  the region of the boundary where the arms attach to the cores, the 
curvature shows very rapid growth. A natural conjecture then is that the curvature 
on the boundary of the layer diverges, and that these curvature singularities collapse 
to the vortex-sheet singularity in the limit. However, a careful examination of the 
computed Fourier spectrum suggests that this is not the case, and that the 
boundaries of the layer remain smooth. Instead, it seems the singularity forms only 
in the limit of zero H ,  as a consequence of accumulations of vorticity in the centre 
region. It is this accumulation for a finite value of H ,  which engenders the appearance 
of the elliptical core, with attached, trailing arms. As H is reduced at a fixed time past 
the singularity time, the approximation to the vortex-sheet strength associated with 
the core width appears to increase without bound. However, the total vortex-sheet 
strength associated with the core, or equivalently, the core circulation, appears to go 
to zero as H is reduced. Such behaviour does not preclude the existence of a classical 
weak solution in the zero H limit (Diperna & Majda 1987). Concomitant with this, 
the arms attached to the core converge away from the core, but become increasingly 
tightly wound in the core region. 

Using a new, spectrally accurate approximation to the Birkhoff-Rott integral, 
singularity formation in vortex-sheet motion is re-examined, with the intent of 
acquiring more precise information on the singularity structure. In  their study of the 
numerical solution of integral equations for conformal mapping, Sidi & Israeli (1988) 
noted that an alternate point, trapezoidal quadrature of integrals with singular, 
periodic Cauchy kernels, such as the integral in the Birkhoff-Rott equation, yielded 
spectral accuracy (i.e. is of infinite order). Unlike other quadrature rules (see, for 
example, Conte 1979), no singularity subtraction is performed, nor do derivative 
approximations need to be computed. This result is applied to the Birkhoff-Rott 
integral to yield an approximating set of ODES to the Birkhoff-Rott equation, whose 
spatial consistency error is of infinite order. The infinite order of the quadrature 
follows from the fact that the asymptotic error expansion of the point-vortex 
approximation, as used by Rosenhead (1931), Kr and many others, has in this 
context only one term of algebraic order, namely O(h),  with the remainder being of 
infinite order. A simple Richardson extrapolation removes this first-order error term, 
yielding the spectrally accurate quadrature rule. We refer to this new semi-discrete 
system as the modified point-vortex approximation. As it  arises as a linear 
combinations of point-vortex approximations to the Birkhoff-Rott integral, the 
modified point-vortex approximation inherits a Hamiltonian structure, and con- 
serves the same quantities as the point-vortex approximation (i.e. circulation and 
moments of vorticity). 

Owing to the ill-posedness of the linearized motion (the disturbance growth rate 
scales linearly with its wavenumber), care must be taken to control the effect of 
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round-off-error. To this end, we employ the Fourier filter advocated in Kr, which, a t  
each timestep, zeros any Fourier modes with amplitude less than some given 
tolerance. The filter operates near the level of the machine round-off. The calculations 
presented here were performed in 30 digits of precision, with the filter tolerance set 
to It will be seen that this level of precision and filter are necessary to discern 
the asymptotic behaviour of the Fourier spectrum, which in turn reveals the 
structure of the nascent singularity. 

The evolution of the vortex sheet from initial conditions first considered by MBO 
is studied in detail for several initial amplitudes. In  addition to their numerical 
study, MBO also performed Moore’s analysis for their initial condition, and found 
results identical to Moore’s. Strictly speaking, Moore’s analysis should be valid only 
for data of sufficiently small initial amplitude, at times well away from the critical 
time. An important question is whether it also well describes the singularity that 
actually forms on the sheet, and if so, whether it is generic, describing well singularity 
formation even in large-amplitude data. We find that for the initial conditions 
considered here, Moore’s analysis does appear to be valid at times well before the 
singularity time. However, near the singularity time a transition in behaviour takes 
place. The real and imaginary parts of the solution become differentiated in their 
behaviour, with the imaginary part becoming smoother than the real part, which is 
itself well-described by Moore’s analysis. We also find that the apparent form of the 
singularity depends upon the amplitude of the initial data. The results suggest that 
either Moore’s analysis gives the full form of the singularity only in the zero- 
amplitude limit, or that the data considered here is not yet sufficiently small for the 
behaviour to be properly described by his asymptotic analysis. 

Section 2 provides further background of the problem. Section 3 discusses the 
modified point-vortex approximation, its properties, and its relationship with other 
approximations. Section 4 gives the results of a numerical study of vortex-sheet 
evolution using the modified point-vortex approximation. This includes a detailed 
study of the spectrum, which reveals the form of the nascent singularity, and also a 
study of the straining flows about the point of singularity. Section 5 gives concluding 
remarks. 

2. Background of the problem 
The geometry of a planar vortex sheet is illustrated in figure I .  The sheet position 

is parametrized by a real variable p as z (p ,  t )  = z(p, t )  +iy(p, t ) ,  - 00 < p < + 00. The 
variable p is chosen to be constant along paths moving with the average of the 
velocities on either side of the sheet, and p is now referred to as the Lagrangian 
variable. This yields the Birkhoff-Rott equation of vortex-sheet motion, 

Here y is called the vortex-sheet strength, z* denotes the complex conjugate of z, and 
the Birkhoff-Rott integral is of principal value type. That y does not depend upon 
time expresses the fact that the circulation is conserved along Lagrangian particle 
paths. The jump in tangential velocity across the interface is called the true vortex- 
sheet strength, and is given by 
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t 
FIQURE 1. A schematic of two-dimensional, planar vortex-sheet geometry. 

where the subscript p refers to partial differentiation. If the sheet initial data 
is 27c periodic in the x-direction, that is z(p+2x, t = 0) = 27c + z ( p ,  t = 0) ,  and 
y(p+22x) = y(p), then the subsequent motion will be also, and is governed by the 
periodic form of (2.1), 

- (24 t )  = g,ip r(a) cot f [ z ( p ,  t )  - Z k ,  01 dq. (2.3) 

It is the periodic form of the Birkhoff-Rott equation that will be considered in this 
study. As for smooth vorticity distributions, there are constants of the motion 
associated with vortex-sheet motion. These include the total circulation and the first 
moments of the vorticity in a periodic strip, and the energy, 

l r  

az* 
at 

E = ~ d p v ~ ~ ~ ~ d ~ v ~ ~ ~ l n i c o s h ~ Y ~ ~ - Y ~ a ~ l - c o s ~ x ~ ~ ~ - ~ ~ a ~ l ~ .  (2.4) 

There will sometimes be analogous constants of the motion for the discrete systems 
arising as approximations to vortex-sheet motion. 

The chief difficulty, which makes both the analytical and numerical treatment of 
the Birkhoff-Rott equation very delicate, is the ill-posedness of its linearized motion, 
as a consequence of the Kelvin-Helmholtz instability. A simple equilibrium is 
given by a flat sheet with uniform sheet strength. Letting y(p) = 1 +sf@), and 
z ( p ,  t )  = p + sp(p,  t )  with s 4 1,  the linearized Birkhoff-Rott equation is given by 

= W(pq-f)  (p, t ) ,  (2.5) 

where H denotes the Hilbert transform (Carrier, Krook & Pearson 1966, p. 417). 
Letting f ( p )  = pkcos kp+pksin kp, (2.5) has trigonometric solutions of the form 

where u2(k) = fk2. (2.7) 

Thus, there is a positive growth rate u(k) = fk, with the linearized modes having 
arbitrarily large growth rates, implying an ill-posed linear motion. This is known as 
the Kelvin-Helmholtz instability. Birkhoff & Fisher (1959) conjectured that for the 
full nonlinear motion, the linear ill-posedness would cause initial data analytic in its 
Lagrangian variable to lose is analyticity in a finite time. Birkhoff (1962) also 
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conjectured that such analytic initial data for (2.1) would remain analytic for at least 
short times. Sulem et al. (1981) have proved Birkhoffs conjecture (Birkhoff 1962). 
Caflisch & Orellana (1986) have proved long-time existence, within the class of 
analytic functions, for analytical initial data that is slightly perturbed from a flat 
sheet. Caflisch & Orellana (1989) and Ebin (1988) have proved the ill-posedness for 
nonlinear vortex-sheet motion in some non-analytic function spaces. 

Moore (1979, 1985) has given the first analytical evidence that a vortex sheet can 
lose its analyticity within a finite time through the formation of a weak singularity 
in the sheet profile. Moore examined the evolution from the initial condition 

z(p, t  = 0) = p+issinp, y ( p )  = 1,  (2.8) 

for E 4 1. This initial condition is composed of both a growing and a decaying linear 
mode, as given by (2.6). The interface may be represented as the Fourier series 

k-+m 

z(p, t )  = p + Ak( t )  eikp, 
k - - m  

with A ,  = -A_,. Substitution of (2.9) into (2.1) yields an infinite system of ordinary 
differential equations for the evolution of Ak( t ) ,  with each equation itself containing 
an infinite number of terms. For small E ,  the amplitudes A,(t) can be expanded as 

(2.10) 

and by equating powers of E ,  it  is found that evolution of A,, ,(t) depends only upon 
A,,,(t) for n < k. This system, for A,,,( t) ,  is then studied for large k. In an analysis 
presumably valid for E 9 1, Moore found the asymptotic behaviour is given by 

If t,(e) is defined by 
4 

l++$+lnt, = ln-, 
€ 

(2.11) 

(2.12) 

then for t < t ,(s), the leading-order Fourier coefficients, E’A, ,~ ,  decay exponentially 
fast. However, for t = t , ( ~ ) ,  this exponential decay is lost, and @A,,, decays only 
algebraically as k-:. This is the crucial result of Moore’s analysis ; if the full evolution 
of the vortex sheet is well described by this leading-order behaviour, then at  t = t , ( ~ ) ,  
the analyticity of the solution is lost. 

The behaviour of the Fourier coefficients can be reinterpreted in terms of the 
spatial behaviour of the sheet profile. The approximate summation of the Fourier 
series given by €,A,, ,(t) yields 

where $ contains less singular terms. As t + t , (~ ) - ,  we have that E O ( t ) + l - ,  and the 
profile acquires singularities a t  p = 0, f 2n, f 4n, etc. Thus, the singularity formation 
can be interpreted as the approach to the real p-axis in the periodic strip, from above 
and below, of a pair of branch singularities of order 8. The analyticity strip width of 
the solution, or the distance of the singularity pair from the real axis, is given by 
a(t)  = k ( 1  +it+ln&t). 
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MBO also examine vortex-sheet evolution, but from the initial condition 

z(p,  t = 0 )  = p ,  y ( p )  = 1 +a cosp. (2.14) 

Again, for small a this initial condition is a combination of a growing and a decaying 
linear mode, as given by (2.6). MBO also found evidence of an isolated singularity 
forming in the sheet profile at a finite time. In addition to repeating Moore’s 
asymptotic analysis for this initial condition, they also studied the singularity 
formation using extended time series methods. For Moore’s analysis, the expansion 
of the Fourier amplitudes is in a ,  rather than E .  They found that to leading order the 
analysis gave results for initial condition (2.14) identical to those for (2.8); the MBO 
results are obtained by merely substituting a for E in (2.10), (2.11) and (2.12). Their 
study using extended time series gave results different from those predicted by 
Moore’s analysis. The series methods indicated that at the singularity time, 
IAk(tc)l w k-2.7*0.2, rather than k-2.6, as given by Moore’s analysis. They were unable 
to assign a definitive cause to the discrepancy, attributing it perhaps to higher-order 
corrections dropped in Moore’s analysis. They also found that tc(a), as calculated 
from (2.12), was typically an underestimate of the singularity time. 

Krasny (1986~)  also studied vortex-sheet singularity formation, now proceeding 
from initial conditions that are unstable eigenfunctions for the Kelvin-Helmholtz 
instability. In agreement with Moore and MBO, Krasny found evidence for the 
appearance of a weak singularity in the sheet profile a t  a finite time. In particular, 
he studied the evolution of vortex sheets from initial conditions of the form 

z(p,t = 0 )  = p + ( l - i ) ~ s i n p ,  y ( p )  = 1 .  (2.15) 

In addition to performing Moore’s analysis for (2.15), Kr also performed direct 
simulations of vortex-sheet motion using the point-vortex approximation to the 
Birkhoff-Rott equation, and a Fourier filtering technique to control the growth of 
errors introduced by the round-off of the calculation. The Fourier amplitudes, A k ( t ) ,  
were approximated from the numerical data using the discrete Fourier transform, 
and the behaviour of the approximate amplitudes was studied. Kr assumed that in 
some range of sufficiently large k the approximate amplitudes had the form 
suggested by Moore’s analysis, or 

wk(t)l w C ( t )  k-fl(t)e-a(t)k. (2.16) 

Thus, if a(t)  goes to zero at some finite time, as Moore’s analysis indicates is the case, 
the decay of the Fourier spectrum is purely algebraic, indicating some derivative 
singularity whose order is determined by the value of p at this critical time. The 
parameters C, p, and a were estimated using a least squares fit over some range in k, 
and the behaviour in time of these approximated parameters is examined. This 
analysis suggested that a(t)  did become zero at  a finite time. However, Kr was unable 
to obtain reliable estimates for the value of p, which Moore’s analysis indicated 
should be P(t) = %, independent of time. It is shown in $4 that to get such estimates, 
much higher precision must be used (29 digits us. 15 digits), and higher-order terms 
must be included in (2.16). 

3. The modified point-vortex approximation 
In  this section the numerical approximations used for calculating vortex-sheet 

motion are discussed. This will focus mostly on quadrature methods for the 
Birkhoff-Rott integral, together with the properties of these approximations. Here 
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will be given a new, spectrally accurate quadrature of the Birkhoff-Rott integral. 
This quadrature is closely related to the point-vortex approximation, and preserves 
many of the favourable properties of that approximation. We begin with a discussion 
of the point-vortex approximation. 

Following Rosenhead (1931), Krasny ( 1 9 8 6 ~ )  used the point-vortex approximation 
(subsequently referred to as the PVA) to study vortex-sheet motion. Discretizing 
z (p ,  t = 0) and y(p) uniformly in the Lagrangian parameter p as z j ( t  = 0 )  = z( jh,  t = 0 )  
and 7, = y ( j h ) ,  with h = 2n/N and j = O(l)N, (2.1) is approximated by the set of 
ordinary differential equations 

The PVA is the trapezoidal rule approximation to the periodic Birkhoff-Rott 
integral, omitting the singular contribution a t  k = j. This set of discrete equations is 
then numerically integrated, and its behaviour studied, as far as is practically 
possible, in the limit of large N .  The spatial consistency error, or the quadrature 
error, of the PVA is O(h).  Caflisch & Lowengrub (1989) have proved that for initial 
data close to the flat equilibrium, the PVA converges to the motion of vortex sheet. 

Presupposing the strict positively (or negativity) of ?(I>), the discrete set of 
equations, (3. l ) ,  forms a Hamiltonian system with Hamiltonian 

N - 1  N- l  

H N  = c 3 / j h  c Ykln[cosh(y~-yk) -cos (x~ i -k ) ] ,  (3.2) 
j-0 k-0 

k +I 

where the conjugate variables p m  and qm are related to the spatial variables x ,  and 
Y m  by 

pm = (8nhym)'y,, qm = (8nhym)'xm. 
Consequently, H N  is a constant of the motion. HN can also be related to the energy 
E of the vortex sheet by noting that H N  is an O(h) accurate quadrature of the energy 
given in (2.4), with the quadrature being of a form consistent with the PVA 
discretization of the Birkhoff-Rott equation. In addition to the Hamiltonian, the 
PVA has as constants of the motion discrete analogues of the circulation and the first 
moments of vorticity in a periodic strip. 

As with the vortex sheet, a simple equilibrium of (3.1) is given by zk(t) = kh, 
Yk = 1. Associated with this equilibrium is an discrete dispersion relation, analogous 
to (2.7), given by 

2 

&(k) = ak2( 1 -;) , (3.3) 

fork = O( 1 )  l& (Lamb 1932). Note that the linearized discrete system (3.1) can evince 
a high wavenumber growth very similar to that of the vortex sheet, and that (2.7) 
is recovered as N+CQ for fixed k .  The largest discrete growth rate is at the highest 
wavenumber allowed on the mesh, k = la, with growth rate v N ( k  = = lfl, or half 
the growth rate for the same wavenumber in the true sheet motion. Practically 
speaking, this means that perturbations from the round-off error of the calculation 
can (and will) lead to the rapid and spurious growth of the high-wavenumber 
amplitudes, causing a rapid departure of the computed solution of the discrete 
system from approximating the continuous system. For this reason, Kr employed a 
Fourier filter that, at each timestep, zeroed any Fourier amplitude whose modulus 






















































